A Schatten–von Neumann class criterion for the magnetic Weyl calculus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-parameter Asymptotics in Magnetic Weyl Calculus

This paper is concerned with small parameter asymptotics of magnetic quantum systems. In addition to a semiclassical parameter ", the case of small coupling λ to the magnetic vector potential naturally occurs in this context. Magnetic Weyl calculus is adapted to incorporate both parameters, at least one of which needs to be small. Of particular interest is the expansion of the Weyl product whic...

متن کامل

A Weyl-covariant tensor calculus

On a (pseudo-) Riemannian manifold of dimension n > 3, the space of tensors which transform covariantly under Weyl rescalings of the metric is built. This construction is related to a Weyl-covariant operator D whose commutator [D,D] gives the conformally invariant Weyl tensor plus the Cotton tensor. So-called generalized connections and their transformation laws under diffeomorphisms and Weyl r...

متن کامل

The Weyl Calculus for Hermitian Matrices

The Weyl calculus is a means of constructing functions of a system of hermitian operators which do not necessarily commute with each other. This note gives a new proof of a formula, due to E. Nelson, for the Weyl calculus associated with a system of hermitian matrices.

متن کامل

INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2018

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2018.1475486